Maize productivity and crop - water relations as affected by irrigation levels and compost rates. Khatab, A. Kh. ; Kh.M. Abd El- Latif ; E.A.M. Osman and S.M.M. Abdou

Soils, Water and Environment Research Institute. (SWERI), ARC, Giza, Egypt.

ABSTRACT

A field experiment was conducted during 2014 and 2015 growing seasons at AI-Arish Agric. Res. Station, AI-Arish Governorate, Egypt. This trial aimed to investigate the effect of irrigation levels i.e. 1800, 2100 and 2400 m³fed⁻¹ as interacted with compost rates i.e. without compost supplying , 2 and 4 tonfed⁻¹ on maize growth, yield, yield components and some crop -water relationships. A split-plot design with four replicates was adopted. The most important results could be summarized as follows:-

- 1- Most of the studied maize growth parameters, grain and stover yields, grain yield attributes and chlorophyllous pigments as well N, P and K contents were significantly affected due to the adopted irrigation water levels in 2014 and 2015 seasons. Increasing irrigation water level from 1800 to 2100 or 2400 m³fed⁻¹, resulted in gradual increases in all of the abovementioned parameters, as well as ET_c and WUE values.
- 2- Likely, the adopted compost rates exerted significant effects to alter all of the investigated parameters e.g. growth, grain yield and yield attributes and chemical constituents as well. The highest compost rate (4 tonfed⁻¹) exhibited the highest figures of the abovementioned characters besides ETc and WUE, comparable with 2 tonfed⁻¹ rate and without compost addition, in 2014 and 2015 seasons.
- 3- The interaction of the highest irrigation water level e.g. 2400 m³fed⁻¹ and supplying the compost at 4 tonfed⁻¹rate resulted in the highest values the investigated growth, grain and stover yields and yield attributes parameters ,chemical constituents as well as ET_c and WUE in 2014 and 2015 seasons. So, it is recommended to apply such interaction to obtain both acceptable maize yield and water utilization figures under Al-Arish conditions.

Keywords: maize yield, irrigation water level, compost rate, growth parameters, yield and yield components, water use, water use efficiency

INTRODUCTION

Maize (*Zea Mays* L.) is one of the most important summer cereal crops grown in Egypt. Maize grain is used for both human and poultry consumption. Therefore, increasing maize production is very important issue. Adequate supply of irrigation water and optimum N fertilizer are two main factors affecting directly the growth and productivity of maize plants. It is well known that fertility of light and sandy soils is related to addition of the organic matter.

Regarding the effect of irrigation on maize crop - water relations in arid and semi- arid regions, the daily evapotranspiration rates of maize often exceed 10 mmday⁻¹ for significant time periods (Howell *et al.*1995). Furthermore, NeSmith and Ritchie (1992) reported that the reductions in maize yield exceeded 90 % due to water deficit during flowering and

Khatab, A. Kh.et.al

pollination stages. The high water requirement of maize with the sensitivity to water stress indicates that limited or deficit irrigation is difficult to implement successfully without causing yield reductions, particularly in light-textured soils. In addition, maize is an efficient user of water in terms of total dry matter production and among cereals it is potentially the highest yielding grain crop. For maximum production a medium maturity grain crop requires between 500 and 800 mm of water depending on climate (FAO Water Development and Management Unit, 2015). Furthermore, El-Hendawy et al. (2008a) stated that In order to improve the WUE and grain yield for dripirrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha regardless of maize varieties. On response of maize crop to irrigation rate and frequency, El-Tantawy et al. (2007) showed that growth and yield attributes were increased with increasing irrigation water (IW): C.P.E ratio. The highest ET_C and WUE resulted from irrigation at 1.2 C.P.E. In connection, El-Hendawy et al. (2008b) on sandy soil at Ismalia, Egypt, found that corn yield, yield components, and IWUE increased with increasing irrigation rates e.g. irrigating at 1.00 ET level, comparable with 0.8 and 0.6 ET levels. Moreover, Payero et al. (2009) reported that under sub surface drip irrigation, water stress can affect growth, development and physiological processes of maize plants and reduce biomass yield. In connection, Farre, I. and J.M. Faci (2009) found that average grain yield of treatments with deficit irrigation around flowering was significantly lower than that of the wellirrigated treatments. El-Hendawy and Schmidhalter (2010) studied the frequency and rate for drip-irrigated maize (1.00, 0.80, and 0.60 of the estimated ET rates) grown on sandy soil and reported that yield variables and water use efficiencies (WUEs) were increased with increasing irrigation frequency and rate. Sharaan et al. (2002) found that maize crop coefficient (K_C) values were 0.74, 0.91, 1.11 and 0.27 for June, July, August and September, respectively. Whereas, Abdel-Maksoud et al. (2008) stated that the K_C values were 0.53, 0.74, 0.99, 0.71 and 0.62 for the abovementioned months, respectively

As for the effect of compost application, it is well known that soil organic matter plays a key role in the soil system and is an important regulator of numerous environmental constraints to crop productivity. Negassa et al. (2001) stated that the applied compost supplied the crop with considerable amounts of different essential macro- and micronutrients. Therefore, the integrated use of compost and low rates of inorganic fertilizers should be used to sustain maize production and productivity. Furthermore, compost addition practice plays a very active role in increasing nutrients availability and the crop yield (Baloch et al., 2004; Rajput et al., 2004; Ayodele and Omotoso, 2008 and Zhang et al., 2009). Response of crops to apply inorganic fertilizer depends on native organic matter content in the soil or that supplied as organic fertilizers, Agboola and Omueti (1982). The plants taken up N from the soil in simple inorganic form nitrate and ammonium which are released from decomposing of complex organic compounds due to action of microorganisms via a process known as mineralization. Concerning effect of organic fertilizer on water relations, Abdou (2004); Sial et al. (2007) and Mohsin *et al.* (2012) found that the most pronounced effects of the added organic amendments to either clay or sandy soils are the significant improvement in soil water retention and transmission. Mbau et al. (2015) stated that compost treated plots recorded maize grain yields representing an increase ranging from 50 to 93 % in Buyangu and 77–100 % in Vakale above the control. Masood *et al.* (2014) in a pot experiment, found that farmyard manure (FYM) improves various soil parameters and to a large extent, the availability of water and nutrient to crops when it is applied to the soil. The authors added that plant height, root and shoot yield, and NPK uptake of maize were increased compared with the control or recommended NPK.

The aim of the present study is to investigate the effect of three compost rates and three irrigation levels and interactions in order to find out the most proper combination resulted in acceptable figures of maize yield, yield components and water productivity as well.

MATERIALS AND METHODS

A field experiment was conducted at the experimental farm of EI-Areish Agricultural Research station, North Sinai Governorate, Egypt. The farm is located at 33.82 longitude, 31.12 latitude and 4.10 m altitude above the mean sea level, during the summer seasons of 2014 and 2015. Some soil hydrophysical constants and bulk density of the experimental site are shown in Table 1. The aim of the study was to determine the effect of irrigation water level and compost rate and interaction on maize growth yield, yield components, some chemical constituents of maize and crop - water relations as well. To achieve these targets, three irrigation water levels i.e. 1800, 2100 and 2400 m³fed⁻¹ season⁻¹ and three compost rates i.e. without compost supplying (control), 2 and 4 ton fed⁻¹ were arranged in a split- plot design with three replicates.

Table 1: Soil hydro-physical constants and bulk density of the experimental site.

Soil depth (cm)	Bulk density (gcm ⁻³)		Field Capacity (%, w/w) (%, v		-	wa	ole soil ter w/w)	
	2014	2015	2014	2015	2014	2015	2014	2015
۰0-15	1.47	1.45	11.4	10.1	5.8	5.5	5.6	4.6
15-30	1.66	1.61	10.9	10.3	5.6	5.3	5.3	5.0
30-45	1.72	1.68	9.7	9.1	4.9	4.6	4.8	4.5
45-60	1.82	1.80	9.4	9.3	4.0	3.8	5.4	5.5

Samples of irrigation water and surface soil layer (00 - 30cm) were initially collected before conducting the experiment to determine particle size distribution, soil texture and some chemical characteristics according to Ryan *et al.* (1996) and data are listed in Tables 2 and 3. Concerning maize grains and stover chemical analyses, total nitrogen was determined by wet oxidation using Kjeldahl digestion and distillation procedures ,Parkinson and Allen (1975) and chlorophyll contents (mg dm⁻²) were determined as described by Moran (1982). Phosphorous was determined calorimetrically using

ammonium molybdate and ammonium metavanadate according as described by Ryan *et al.* (1996). Potassium was determined using the flame spectrophotometer method (Black, 1982).

Maize seeds (Single-Cross 10 hybrid) were sown at 15 kgfed¹ rate on June, 1 and 3 in 2014 and 2015 summer seasons, respectively. To ensure full germination, 60 mm of irrigation water was applied for all the sub plots at sowing with an additional irrigation of 80 mm were applied 20 days later for complete establishment of seedlings. Irrigation was executed at 4 days interval along the growing season. The tested irrigation levels were distributed on 23 irrigation events and reached to about 12, 14 and 17mm/irrigation under 1800, 2100 and 2400 m³fed⁻¹ levels, respectively. Irrigation time, to apply the appropriate water quantity, was determined based on dripper's number per plot and actual dripper discharge, Lh¹ and application efficiency as 90%. The assessed compost rates were supplied during seed bed preparation, and some of its chemical characteristics are shown in Table 4. Fertilization was managed according to the recommendation of the Ministry of Agriculture in Egypt, where superphosphate and potassium sulphate fertilizers were applied before ridging at 30 kg P_2O_5 and 48 kg K_2O fed⁻¹ rates, respectively. Nitrogen fertilizer at 100 kgNfed⁻¹ rate was applied in four equal portions (at 20, 35, 50, and 65 days after sowing, DAS) in the form of ammonium sulphate (20.6 %N). The adopted N fertilizer dose was thoroughly dissolved in a proper water quantity and the supernatant was injected into the irrigation system. The other common cultural practices for maize production were executed.

cnarac	teristics of the ex	kperimental site	•
Charac	ters	2014	2015
	Coarse sand %	12.20	10.75
Particle	Fine sand %	53.20	51.10
size distribution	Silt %	33.88	37.40
	Clay %	0.72	0.75
	Textural class	Sandy loam	Sandy loam
pH (1:2	2.5)	8.46	7.80
CaCO₃	(%)	18.52	20.10
EC _e (dSm ⁻¹), soil	paste extract	3.20	2.84
	Ca ⁺²	3.20	4.40
Soluble cations	Mg ⁺²	8.70	8.10
(meqL ⁻¹)	Na⁺	11.50	14.20
	K⁺	1.80	1.50
Coluble opiene	HCO ₃	8.60	9.80
Soluble anions (meqL ⁻¹)	CI	10.20	11.50
(meqr)	SO4	6.40	6.90
	N	13.45	11.90
Macro- elements (ppm)	Р	4.06	3.86
	K	28.40	26.90

 Table 2: Soil particle size distribution and some chemical characteristics of the experimental site.

Table 3: Chemical analysis of the irrigation water.

Characters		2014	2015
рН		7.3	7.2
EC _e dSm ⁻¹		5.08	5.28
	Ca⁺²	8.2	8.7
	Mg ⁺²	5.2	5.5
Soluble cations (meqL ⁻¹)	Na⁺	37.6	38.7
	K⁺	0.1	0.1
	HCO ₃ ⁻	4.8	4.3
Soluble anions (meqL ⁻¹)	CI	39.7	41.6
	SO4	6.6	7.1

Table 4: Some chemical characteristics of the used compost.

Properties	2014	2015
pH (1:10 compost : Water suspension)	6.83	6.61
EC dSm ⁻¹ (1:10 compost: Water extract)	1.64	1.53
O.M., %	28.83	29.17
O.C. , %	16.72	16.92
Total N, %	0.85	0.92
C / N ratio	19.67	18.39
Available P, %	0.433	0.048
Available K, %	0.551	0.568

Harvesting was executed on September, 23 and 25, respectively in 2014 and 2015 seasons. Ten plants were chosen randomly from the two inner rows of each sub-plot and plant height (cm), ear length (cm), ear diameter (cm), and 100- grain weight (g) were recorded. In addition, stover and grain yields (tonfed.⁻¹) were determined based on the whole sub plot area, and sampled for determining N, P and K contents. Grain protein content was estimated via multiplying N% by 6.25. Furthermore, at 35 and 50 DAS plant height, fresh and dry weights per plant were recorded and chlorophyllous pigments content was determined as well.

Data collected for the studied variables were subjected to statistical analysis using MStat computer package to calculate F ratio according to Snedecor and Cochran (1980). The means were compared using Least Significant Difference (LSD) at 5% level according to Waller and Duncan (1969).

Crop- water relationships:

1- Monthly and seasonal evapotranspiration (ETc):

The crop water consumptive use between each two successive irrigations was calculated according to the equation given by Israelsen and Hansen (1962) as follows:

$$Cu = \frac{\text{D.Bd.}[\text{Q2} - \text{Q1}]}{100}$$

Where:

Cu = consumptive use or actual evapotranspiration (cm).

D = Effective root zone depth (cm).

Bd = soil bulk density (gcm^{-3}) .

 Q_2 = soil moisture content (%, w/w) after irrigation.

 Q_1 = soil moisture content (%, w/w) before the next irrigation.

2- Reference evapotranspiration (ETo)

The reference evapotranspiration (ETo) in mmmonth¹ was calculated using the monthly averages of EI-Areish metrological data and FAO Penman-Monteith equation (Allen et al., 1998) and the CROPWAT model (Smith, 1991). The agro-meteorological data and the calculated ETo values are recorded in Table 5.

Table 5: The monthly averages of agro-meteorological data and ETo for North Sinai Governorate during 2014 and 2015 growing seasons.

		Tem	peratu	ire C°	Relative	Wind	ETo
Month	Year	Max	Min	Mean	Humidity (%)	speed (msec ⁻¹)	(mmday ⁻¹)
luno	2014	37.0	19.8	28.4	35.7	4.2	6.34
June	2015	35.3	19.0	27.1	40.4	4.2	6.30
lub.	2014	38.1	21.1	29.6	38.8	3.8	6.46
July	2015	38.2	21.1	29.6	37.4	3.7	6.39
August	2014	38.4	21.9	30.1	41.4	3.6	6.20
August	2015	39.7	23.8	31.7	40.7	4.0	6.08
Sontombor	2014	35.4	20.6	28.0	45.8	3.5	5.24
September	2015	36.2	19.8	28.0	44.2	3.6	5.03

3. Crop coefficient (Kc):

Maize crop coefficient values were estimated using the equation reported by Doorenbos and Kassam (1986) as follows:

$K_{C} = ET_{C} / ET_{O}$

 K_C = crop coefficient.

- ET_C = the measured (actual) evapotranspiration of a considered period $(mm day^{-1}).$
- ETo = reference evapotranspiration (mm day⁻¹) referring to the same period.
- 4. Water Use Efficiency (WUE, kgm⁻³): Water use efficiency was estimated according to Jensen (1983) as follows:

$$WUE = \frac{Y}{CU}$$

Where:

Where:

WUE = kg grains m^{-3} water consumed. Y= Grain yield, kgha⁻¹ was replaced to be kgfed⁻¹.

CU= Seasonal water consumptive use, $m^{3}ha^{-1}$ replaced to be $m^{3}fed^{-1}$.

RESULTS AND DISCUSSION

Growth, yield and yield components parameters 1-Growth parameters

The results in Table 6 reveal that most of maize growth parameters were significantly affected the adopted irrigation water rates in 2014 and 2015 seasons. It is well known that maize is very responsive crop to the amount of irrigation water applied. So, increasing irrigation water level to 2400 m³fed⁻¹ resulted in higher values of plant height, fresh weight at 35 and 50 DAS, dry weight at 35 and 50 DAS in 2014 and 2015 seasons. These results may be attributed to the proper available soil moisture in the root zone of plants during the growing season which enhancing photosynthesis efficiency, cell division, stem elongation and dry matter accumulation. The obtained results are in agreements with those found by EI-Tantawy et al. 2007 and Soleimanifard et al. (2011).

Concerning the effect of compost treatments, data in Table 6 indicate that the adopted compost rates significantly affected all the studied maize growth parameters in 2014 and 2015 seasons, except plant height and fresh weights at 35 and 50 DAS in 2014 season. In general, the highest figures of the growth parameters were recorded with compost addition at 4 tonfed⁻¹rate and seemed to reduce as the compost rate decreased. Such findings may be due to the role of organic manures in improving the soil microbial activity in releasing nutrients required for plant growth. These results are in harmony with those obtained Belay *et al.* 2001.

With respect to the effect of interaction of irrigation water levels and compost rates, results in Table 6 show that growth parameters significantly affected in 2014 and 2015 seasons. The highest averages of growth parameters were detected under 2400 m^3 fed⁻¹ level as interacted with 4 tons compost fed⁻¹ rate. On the contrary, the lowest averages were obtained due to interaction of 1800 m^3 fed⁻¹ and applying no compost in 2014 and 2015 seasons.

Khatab, A. Kh.et.al

Table 6: Effect of i	rrigation leve	an an	d com	pos	st rate	and	intera	action on	
growth seasons.	parameters	of r	naize	in	2014	and	2015	growing	

$\begin{array}{ c c c c c c } \hline rrigation level (m^3 fed^4) (rate (rate$	season	3.	1			r	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Irrigation level (m ³ fed ⁻¹)	rate	height (cm)	Weight 35 DAS (gplant ⁻¹)	Weight 50 DAS	35 DAS	50 DAS
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1800					-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				202.5	414.6	47.42	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)	4 ton, C ₃				48.13	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean			-	417.2	47.11	130.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2100	Zero, c1			387.4	49.62	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(12)	4 ton, C ₃	-	244.1	479.8		145.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean		185.7	231.6	430.0	50.66	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2400	Zero, c1	182.2	248.3	402.1	55.79	127.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2 ton, C ₂	190.4	259.8	439.7	56.05	138.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(13)	4 ton, C ₃	200.9	267.7	493.2	55.77	152.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean	•	191.1	258.6	445.0	55.87	139.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Com	post mean	-	•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				219.2	386.1	50.39	125.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 ton, C	2	184.2	231.8	425.7	51.51	133.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 ton, C	196.2	240.6	480.4	51.73	145.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			L.S	.D at 0.05		•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I		16.38	13.03	N.S	0.91	2.70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	С		N.S	N.S	14.68	NS	2.25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I x C		10.60	30.37	25.43	4.35	3.91
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				5 season		•	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1000	Zero, c1	157.9	171.6	319.7	43.2	122.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			165.8	179.5	371.1	44.57	138.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)	4 ton, C ₃	175.7	1921	438.1	46.89	159.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean	•	166.5	181.1	376.3	44.89	140.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2100	Zero, c1	164.5	193.4	344.1	47.23	125.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2 ton, C ₂	175.1	204.7	393.2	48.95	141.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(12)	4 ton, C ₃	183.4	215.8	464.6	49.78	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean	•	174.4	204.6	400.0	48.65	141.5
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	2400		169.6	218.6	368.4	53.51	129.5
A ton, C ₃ 191.1 232.9 470.9 53.26 153.5 Mean 179.7 224.3 419.1 52.79 141.8 Compost mean Zero ton, C ₁ 164.0 194.5 344.1 47.98 125.5 2 ton, C ₂ 173.1 201.9 394.1 48.37 140.61 4 ton, C ₃ 183.4 213.6 457.9 49.98 157.3 L.S.D at 0.05 I N.S 12.12 12.16 2.49 5.53 C 8.29 6.35 10.96 4.00 5.38		2 ton, C ₂	178.3	221.4	418.0	51.60	142.3
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(13)	4 ton, C ₃	191.1		470.9	53.26	153.5
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Mean		179.7	224.3	419.1	52.79	141.8
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Com	post mean	-	•	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Zero ton,	164.0	194.5	344.1	47.98	125.5	
L.S.D at 0.05 N.S 12.12 12.16 2.49 5.53 C 8.29 6.35 10.96 4.00 5.38				394.1	48.37		
I N.S 12.12 12.16 2.49 5.53 C 8.29 6.35 10.96 4.00 5.38	4 ton, C	183.4	213.6	457.9	49.98	157.3	
C 8.29 6.35 10.96 4.00 5.38	L.S.D at 0.05			•	•		
		•	N.S	12.12	12.16	2.49	5.53
I x C 14.37 11.01 18.98 6.91 4.03	С		8.29	6.35	10.96	4.00	5.38
	IxC		14.37	11.01	18.98	6.91	4.03

2- Grain and stover yields and yield components The results in Table 7 reveal that the averages of yield and its components were significantly affected due to the adopted irrigation water levels in 2014 and 2015 seasons.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		seasons.											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	level												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(m° fed ^r ')	(tonfed ⁻ ')			(g)	(tonfed ⁻ ')	(tonfed [*])						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1800												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)	4 ton, C_3											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mean												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2100			-									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mean			-									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2400												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean					10.65	3.19						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 ton, 0	C ₃	19.04	5.91	26.86	10.89	3.23						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I				1.11								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I x C		-		1.54	0.04	0.11						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1800												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						6.37							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)	4 ton, C ₃				7.40							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2100												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					24.52	8.73	2.91						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2400												
A ton, C3 18.13 5.77 28.88 10.44 3.37 Mean 17.04 5.35 26.70 9.10 2.99 Compost mean Zero ton, C1 15.35 4.53 22.05 6.74 2.27 2 ton, C2 15.26 4.91 23.74 7.74 2.63 4 ton, C3 17.03 5.42 25.30 8.86 2.95 L.S.D at 0.05 L.S.D at 0.05 0.44 0.07 0.44 0.07 C N.S 0.63 N.S 0.34 0.01			16.20	5.25	26.86	9.35							
Compost mean Zero ton, C1 15.35 4.53 22.05 6.74 2.27 2 ton, C2 15.26 4.91 23.74 7.74 2.63 4 ton, C3 17.03 5.42 25.30 8.86 2.95 L.S.D at 0.05 I 1.89 1.09 2.20 0.44 0.07 C N.S 0.63 N.S 0.34 0.01	(13)	4 ton, C ₃											
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Mean		17.04	5.35	26.70	9.10	2.99						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				npost mear									
4 ton, C ₃ 17.03 5.42 25.30 8.86 2.95 L.S.D at 0.05 I 1.89 1.09 2.20 0.44 0.07 C N.S 0.63 N.S 0.34 0.01													
L.S.D at 0.05 I 1.89 1.09 2.20 0.44 0.07 C N.S 0.63 N.S 0.34 0.01													
I 1.89 1.09 2.20 0.44 0.07 C N.S 0.63 N.S 0.34 0.01	4 ton, 0	4 ton, C ₃			25.30	8.86	2.95						
C N.S 0.63 N.S 0.34 0.01			L.S	S.D at 0.05									
I x C 4.42 1.09 4.60 0.58 0.02	-												
	I x C		4.42	1.09	4.60	0.58	0.02						

Table 7: Effect of irrigation level and compost rate and interaction on yield and yield components of maize in 2014 and 2015 growing seasons.

The highest average values of grain yields (3.19 and 2.99 tfed⁻¹) were obtained with 2400 m³fed⁻¹ of irrigation water in 2014 and 2015 seasons, respectively. Reducing the irrigation level to be 2100 or 1800 m³fed⁻¹ induced reductions in grain yield reached to 11.29 and 22.57% in 2014 season and 17.04 and 20.56% in 2015 season, respectively, comparable with 2400 m³fed⁻¹ level. The stover yield and yield attributes under study exhibited similar trends, where the highest figures of ear length, ear diameter and 100- grain weight were obtained under 2400 m³fed⁻¹ level, respectively, in 2014 and 2015 seasons comparable with 1800 and 2100 m³fed⁻¹ levels. The obtained results are in agreement with those found by EI-Tantawy *et al.* (2007), EI-Hendawy *et al.* (2008), Payero et al. (2009) and Farre and Faci (2009).

Data in Table 7 reveal that the averages of grain and stover yields and yield components were significantly differed due to the investigated compost rates in 2014 and 2015 seasons, except ear length and 100-grain weight in 2015 season. Supplying compost at 4 tonfed⁻¹ resulted in the highest values of grain yield (3.23 and 2.95 tonfed⁻¹in 2014 and 2015 seasons, respectively. Reducing compost rate exhibited lower grain yield values amounted to (13.62 and 24.77%) and (10.85 and 23.05%) due to supplying the compost at 2 tonfed⁻¹ rate and without compost addition, respectively, compared with 4 tonfed⁻¹ rate in 2014 and 2015 seasons. The yield attributes and stover yield exhibited similar trends, where the highest values in 2014 and 2015 seasons were attained with 4 tonfed⁻¹ rate and tended to reduction with reducing the compost rate. The improved values of grain and stover yields and yield attributes as well are attributed to the favorite effects of compost addition on soil water holding capacity, Abdou (2004) and soil edaphic conditions, Baloch *et al.*, 2004; Rajput *et al.*, 2004; Ayodele and Omotoso, 2008 ; Zhang *et al.*, 2009 and Mbau et al. (2015).

The results in Table 7 indicate that averages of maize yield and its components were significantly affected by the interaction of the adopted irrigation water levels and compost rates in 2014 and 2015 seasons. The highest averages of yield and yield components were observed from interaction of irrigation at 2400 m^3 fed⁻¹ level and applying compost at 4 tonfed⁻¹rate, whereas, the lowest ones were obtained from irrigation at 1800 m^3 fed⁻¹ level as interacted with without compost.

3-Some chemical constituents

Contents of chlorophyllous pigments, N, P and K% in stover and N, P, K and protein% in grains were significantly influenced due to the adopted irrigation water levels in 2014 and 2015 seasons, except K and P% in grains in 2014 season and K% in stover and P% in grains in 2015 season. Data in Table 8 illustrate that 2400 m³fed⁻¹ level resulted in the highest values of the investigated chemical constituents which tended to reduction as the irrigation water level decreased and such trend was true in 2014 and 2015 seasons. These results may be attributed to that the soil moisture in the root zone was more available under the highest irrigation water level that helps increased nutrients absorption which consequently enhanced the growth, yield and chemical constituents of maize plants. These results are in agreement with those obtained by Ibrahim and Hala (2007).

Table 8: Effect	of irrigatio	n level and c	om	post rate	e ar	nd inte	eractio	on on
some	chemical	constituents	of	maize	in	2014	and	2015
growi	ng seasons							

Irrigation Compost On B On B <tho b<="" th=""> On B On B<th>Invigation</th><th>growing</th><th>Cha</th><th>Ch b</th><th>Ch a+b</th><th>ę</th><th>Stove</th><th>r</th><th></th><th>G</th><th>rains</th><th></th></tho>	Invigation	growing	Cha	Ch b	Ch a+b	ę	Stove	r		G	rains	
(m³ fed ⁻¹) (tonfed ⁻¹) (leaves (DBAS) (50DAS) (50			IN						N			Protein
Verticity Vertity Vertity <th< th=""><th></th><th>(tonfed⁻¹)</th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th>-</th><th></th><th></th></th<>		(tonfed ⁻¹)					-			-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. ,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Zero, 1	2,455				0.20	1.12	1.59	0.33	0.29	9.24
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(l ₁)					0.28	0.23	1.27				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Me	an		0.916	3.800	0.26	0.21	1.21	1.70	0.36	0.31	9.79
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	04.00	Zero,c1	2.581	0.875	3.456	0.25	0.23	1.23	1.64	0.36	0.30	9.77
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 ton,c ₂	3.111	1.088	3.866	0.29	0.23	1.35	1.75	0.40	0.32	10.24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(12)	4 ton,c ₃	3.720	10126	4.846	0.30	0.27		1.80	0.43	0.35	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Me	an		1.030	4.056	0.28	0.24	1.31	1.73	0.40	0.32	10.26
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2400	Zero, c1	2.581	0.875		0.25	0.23			0.36	0.30	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$2 \text{ ton, } c_2$	3.111	1.088								10.24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				10126					1.80	0.43	0.35	10.78
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Me	an	3.227					1.38	1.78	0.42	0.38	10.37
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $, =										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 ton	n, C₃	3.636	1.114			0.26	1.36	1.82	0.43	0.36	10.64
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-									-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-									-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	l x	С	N.S				N.S	0.14	0.06	0.05	N.S	NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1800					-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(l ₁)						-					-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IVIE											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2100					-						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(l ₂)		-				-		-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ma											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IVIE						-	-	-			
(13) 4 ton, c ₃ 3.672 1.127 3.238 0.32 0.26 1.39 1.85 0.45 0.39 10.64 Mean 3.105 1.113 4.217 0.29 0.24 1.34 1.75 0.41 0.35 10.06 Compost mean Zero ton, C1 2.444 0.883 3.327 0.24 0.20 1.18 1.65 0.34 0.30 9.468 2 ton, C2 2.905 1.002 3.907 0.27 0.22 1.27 1.70 0.38 0.33 9.795 4 ton, C3 3.431 1.055 4.486 0.29 0.24 1.31 1.79 0.42 0.35 10.31 L.S.D at 0.05 I 0.735 0.071 0.109 N.S 0.12 NS 0.04 NS 0.24 0.108 0.080 0.134 N.S 0.03 0.07 0.05 0.03 0.03 0.28	2400											
Mean 3.105 1.113 4.217 0.29 0.24 1.34 1.75 0.41 0.35 10.06 Compost mean Zero ton, C1 2.444 0.883 3.327 0.24 0.20 1.18 1.65 0.34 0.30 9.468 2 ton, C2 2.905 1.002 3.907 0.27 0.22 1.27 1.70 0.38 0.33 9.795 4 ton, C3 3.431 1.055 4.486 0.29 0.24 1.31 1.79 0.42 0.35 10.31 L.S.D at 0.05 1 0.735 0.071 0.109 N.S 0.12 NS 0.04 NS 0.24 C 0.108 0.080 0.134 N.S 0.03 0.07 0.05 0.03 0.03 0.28	(l ₃)											
Compost mean Zero ton, C1 2.444 0.883 3.327 0.24 0.20 1.18 1.65 0.34 0.30 9.468 2 ton, C2 2.905 1.002 3.907 0.27 0.22 1.27 1.70 0.38 0.33 9.795 4 ton, C3 3.431 1.055 4.486 0.29 0.24 1.31 1.79 0.42 0.35 10.31 L.S.D at 0.05 I 0.735 0.071 0.109 N.S 0.12 NS 0.04 NS 0.24 C 0.108 0.080 0.134 N.S 0.03 0.07 0.05	Mo											
Zero ton, C1 2.444 0.883 3.327 0.24 0.20 1.18 1.65 0.34 0.30 9.468 2 ton, C2 2.905 1.002 3.907 0.27 0.22 1.27 1.70 0.38 0.33 9.795 4 ton, C3 3.431 1.055 4.486 0.29 0.24 1.31 1.79 0.42 0.35 10.31 L.S.D at 0.05 I 0.735 0.071 0.109 N.S 0.12 NS 0.04 NS 0.24 C 0.108 0.080 0.134 N.S 0.03 0.07 0.05 0.03 0.28	IVIE	an	3.105	-				1.54	1.75	0.41	0.55	10.00
2 ton, C2 2.905 1.002 3.907 0.27 0.22 1.27 1.70 0.38 0.33 9.795 4 ton, C3 3.431 1.055 4.486 0.29 0.24 1.31 1.79 0.42 0.35 10.31 L.S.D at 0.05 I 0.735 0.071 0.109 N.S 0.12 NS 0.04 NS 0.24 C 0.108 0.080 0.134 N.S 0.03 0.07 0.05 0.03 0.24	Zero to	on C₁	2 4 4 4					1 18	1 65	0.34	0.30	9 468
4 ton, C3 3.431 1.055 4.486 0.29 0.24 1.31 1.79 0.42 0.35 10.31 L.S.D at 0.05 I 0.735 0.071 0.109 N.S 0.12 NS 0.04 NS 0.24 C 0.108 0.080 0.134 N.S 0.03 0.07 0.05 0.03 0.28		, .										
L.S.D at 0.05 I 0.735 0.071 0.109 N.S 0.12 NS 0.04 NS 0.24 C 0.108 0.080 0.134 N.S 0.07 0.05 0.03 0.03 0.28												
I 0.735 0.071 0.109 N.S 0.12 NS 0.04 NS 0.24 C 0.108 0.080 0.134 N.S 0.03 0.07 0.05 0.03 0.28	51	, -0										
C 0.108 0.080 0.134 N.S 0.03 0.07 0.05 0.03 0.03 0.28			0.735				0.12	NS	0.04	NS	0.04	0.24
I X C N.S N.S N.S N.S 0.06 0.13 NS 0.06 0.56 0.31	Ċ)				-				-		
	Iх	С	N.S		N.S	N.S	0.06	0.13	NS	0.06	0.56	0.31

Regarding the effect of the assessed compost rates, significant influences were exerted to alter the chemical constituents under study in 2014 and 2015 seasons, except K% in grains in 2014 season and N% in stover in 2015 season. Data in Table 8 indicate that the highest values of the studied chemical were obtained due to supplying 4 ton of compost fed⁻¹ in 2014 and 2015 seasons. Whereas, without addition compost produced the lowest values in 2014 and 2015 seasons. These results may be due to the potency of compost (organic matter) in stimulating amino acids building and growth hormones as well, which in turn gave positive action on genetic factors that control the various metabolic processes. The obtained results are in agreement with those reported by Masood et al. (2014) who stated that increasing levels of FYM, NPK uptake of maize were increased compared with the control or recommended NPK.

The results in Table 8 show that the interaction of irrigation water levels and compost rates in 2014 were significant to influence chlorophyll b, N% and K% in stover, N and P% in grains, whereas, in 2015 the interaction was significant to affect P and K% in stover, P, K and protein% in grains. The highest values were mostly resulted from 2400 m^3 fed⁻¹ of irrigation water level as interacted with 4 tonfed⁻¹ compost rate in 2014 and 2015. Whereas, the lowest values of chemical constituents were attained due to interaction of 1800 m^3 fed⁻¹ level and without compost addition, and such trend was true in the two seasons of study.

I- Crop water relations

1-Seasonal evapotranspiration (ET_a)

The results in Table 9 indicate that seasonal ET_a of maize as a function of the adopted irrigation water levels and compost rates were 44.3 and 42.6 cm in 2014 and 2015 seasons, respectively. The seasonal ET_C values were increased, as irrigation water level increased. Increasing irrigation water level from 1800 to 2100 or 2400 m³fed⁻¹ caused an increase in seasonal ET_a reached to 6.47 and 12.23% and 5.68 and 10.37%, respectively, in 2014 and 2015 season comparable with 1800 m³fed⁻¹ level. These results may be referred to that decreasing the irrigation water level season⁻¹ decreased the available soil moisture in the root zone of plants which in turn reduce the transpiration from plant canopy and the evaporation from the soil surface as well. These results are in agreement with those reported by Sharaan *et al.* (2002) and El-Tantawy *et al.* (2007).

Regarding the effect of compost rate on seasonal ET_a , data in Table 9 show that the highest ET_a values e.g. 45.9 and 44.6 cm were recorded with compost addition at 4 tonfed⁻¹, which are higher than those under 2 tonfed⁻¹ rate and without compost addition by (3.05 and 7.41%) and (4.04 and 9.19%), respectively, in 2014 and 2015 seasons. These results are in agreement with those reported by Abdou (2004), Sial *et al.* (2007), Mohsin *et al.* (2012) and Masood et al. (2014) who found that increasing levels of organic matter, for maize crop, resulted in increased soil water content compared with the control or recommended NPK.

Data in Table 9 indicate that the highest ET_a values e.g.48.3 and 46.4cm in 2014 and 2015 seasons, respectively, resulted due to interaction of irrigation at 2400 m³ irrigation water level and 4 tonfed⁻¹ of compost rate.

J. Soil Sci. and Agric. Eng., Mansoura Univ., Vol. 6 (12), December 2015

These results may be due to that increasing compost level to 4 ton fed⁻¹ and applying 2400 m³ water fed⁻¹ increased N availability to plants and soil moisture availability which gave vigorous vegetative growth and this in turn increased transpiration from plants and evaporation from soil. On the contrary, interaction of 1800 m³fed⁻¹ of irrigation water level and without addition compost rate attained the lowest ET_a values which comprised 39.9 and 38.3cm, respectively, in 2014 and 2015 seasons.

	2010 000000											
		Irrigation level										
Compost		2014 s	season			2015 s	season					
rate	1800 m³fed⁻¹	2100 m ³ fed ⁻¹	2400 m ³ fed ⁻¹	Mean	1800 m ³ fed ⁻¹	2100 m ³ fed ⁻¹	2400 m ³ fed ⁻¹	Mean				
Zero compost	39.9	42.2	45.4	42.5	38.3	40.4	42.9	40.5				
2 tonfed ⁻¹	41.8	44.9	46.7	44.5	40.5	43.2	44.8	42.8				
4 tonfed ⁻¹	43.3	46.2	48.3	45.9	42.6	44.9	46.4	44.6				
Mean	41.7	44.4	46.8	44.3	40.5	42.8	44.7	42.6				

Table 9: Effect of irrigation level, compost rate and interaction on seasonal evapotranspiration (ET_{a} , cm) of maize in 2014 and 2015 seasons.

2- Reference evapotranspiration (ETo, mmday⁻¹)

The daily ET_0 rates (mmday⁻¹) during the two growing seasons of 2014 and 2015 are shown in Table 10. The daily ET_0 values were estimated using the daily meteorological data of North Sinai Governorate and the procedures of FAO- Penman Monteith equation from June to September in 2014 and 2015 seasons. The results show that ET_0 values were started high during June and July, then decreased gradually during August and September and such trend was true in 2014 and 2015 seasons. These results may be attributed to the changes in the weather factors from month to the other. These results are confirmed with those reported by Allen *et al.* (1998), which mentioned that the ET_0 values are mainly depending on the evaporative power of the air in the around area, i.e. temperature, wind speed, relative humidity and solar radiation.

3- Crop coefficient (K_C)

The K_C reflects the influence of crop cover percentage on the ETo values during different growth stages. The K_C values were calculated from daily ET_a and daily ETo rates of the same period from planting to harvest as shown in Table 10. Data reveal that the K_C values for the highest seed yield interaction (irrigating with 2400 m³fed⁻¹ season⁻¹ and supplying 4 ton of compost fed⁻¹) were started low during June (initial growing season). Thereafter, the K_C values increased during July (establishment and rapid vegetative growth stages) and reached its maximum values at August (maximum growth and heading stages). The K_C values decreased again during September (maturity and harvesting stages). The obtained results trend was similar in 2014 and 2015 seasons. Such findings may be referred to the high diffusive resistance of the bare soil during initial growing stage (June), which reduced by increasing the crop cover percentage until maximum vegetative growth (July) and anthesis stage (August). However, at

Khatab, A. Kh.et.al

late season (September) the transpiration decreased sharply, as most leaves became dry. These results are in the same trend with those reported by Abdou (2004).

Table 10: Reference evapotranspiration ETo (mmday⁻¹), daily ET_a (mmday⁻¹) and crop coefficient (K_C) values of maize under the highest yielding interaction (I₃C₃) in 2014 and 2015.

	201	4 season		20	15 season	
Month	ET ₀ (mmday ⁻¹)	ET _C (mmday ⁻¹)	Kc	ET _o (mmday ⁻¹)	ET _c (mmday ⁻¹)	Kc
June	6.34	2.71	0.43	6.30	2.57	0.41
July	6.46	6.19	0.96	6.39	6.02	0.94
August	6.20	4.90	0.79	6.08	4.64	0.76
September	5.24	2.77	0.55	5.03	2.77	0.46

4- Water Use Efficiency (WUE)

The WUE values expressed as, kg seeds m⁻³ of water consumed by the crop plants are presented in Table 11. The results show that the water use efficiency values, as a function (overall average) of irrigation water levels and compost rates were 1.51 and 1.45 kg seeds m⁻³ water consumed in 2014 and 2015 seasons, respectively. Irrigating at 2400 m³fed⁻¹ level gave the highest WUE values e.g. 1.62 and 1.59 kg seeds m⁻³ water consumed in 2014 and 2015 seasons, respectively. The WUE with 2400 m³fed⁻¹ level surpassed those with 2100 and 1800 m³fed⁻¹ by (6.79 and 14.20 %) and (8.81 and 16.98 %), respectively, in 2014 and 2015 seasons. These results may be due to the remarkable increase in grain yield more than the increase in ETa. These results are in harmony with those of Abdou (2004); EI-Tantawy et al. (2007) and EI-Hendawy and Schmidhalter (2010) who reported that yield variables and water use efficiencies (WUEs) were increased with increasing irrigation frequency and rate. Furthermore, water utilization efficiency for harvested yield (Ey) for grain varies between 0.8 and 1.6 kgm⁻³ (FAO Water Development and Management Unit, 2015).

Regarding the effect of compost addition, applying 4 tonfed⁻¹ rate resulted in the highest WUE values (1.67 and 1.57 kgseedsm⁻³ water consumed), which surpassed 2 tonfed⁻¹rate and without compost supplying by (10.78 and 18.56%) and (7.00 and 15.29%), respectively, in 2014 and 2015 seasons. It is evident that compost supplying improved WUE for maize could be attributed to the resultant higher grain yield. These results are in the same line to those found by Abdou (2004) Sial *et al.* (2007) and Mohsin *et al.* (2012).

The interaction of the highest both irrigation water level (2400 m³fed⁻¹) and compost rate (4 tonfed⁻¹) resulted in the highest WUE figures which comprised 1.76 and 1.73 kg seedsm⁻³ water consumed in 2014 and 2015 seasons, respectively.

	Irrigation level							
Compost	2014 season				2015 season			
rate	1800 m ³ fed ⁻¹	2100 m ³ fed ⁻¹	2400 m ³ fed ⁻¹	Mean	1800 m ³ fed ⁻¹	2100 m ³ fed ⁻¹	2400 m ³ fed ⁻¹	Mean
Zero compost	1.27	1.35	1.45	1.36	1.24	1.34	1.41	1.33
2 tonfed ⁻	1.34	1.48	1.65	1.49	1.29	1.46	1.63	1.46
4 tonfed ⁻¹	1.55	1.70	1.76	1.67	1.44	1.54	1.73	1.57
Mean	1.39	1.51	1.62	1.51	1.32	1.45	1.59	1.45

Table 11: Effect of irrigation water level, compost rate and interaction on water use efficiency (kg grainsm⁻³) consumed water of maize crop in 2014 and 2015.

On conclusion and based on the current results, it is advisable to apply irrigation with 4200 m³fed⁻¹ level and supplying the compost at 4 tonfed⁻¹ rate interaction to accomplish both acceptable maize yield and water utilization figures under Al-Arish conditions.

REFERENCES

- Abdel-Maksoud, H.H; M.R.K. Ashry and K. M.R.Youssef (2008). Maize yield and water relations under different irrigation and plant density treatments. J. Agric. Sci. Mansoura Univ., 33(5): 3929- 3941.
- Abdou, S.M.M. (2004). Scheduling grain sorghum irrigation using pan evaporation under different management systems. Ph.D. Thesis, Faculty of Agriculture, Cairo Univ., Egypt.
- Agboola, A.A. and J.A. Omueti (1982). Soil fertility problem and its management in tropical Africa. Paper presented at the International Institute of Tropical Agriculture, Ibadan, Nigeria, p p: 25.
- Allen, R.G.; L.S. Pereira; D. Raes and M. Smith (1998). Crop evapotranspiration. Guidelines for computing crop water requirement, Irrigation and Drainage, FAO, 56, Rome, Italy.
- Ayodele, O.J. and S.O. Omotoso (2008). Nutrient management for maize production in soils of the Savannah Zone of South-Western Nigeria. International J. Soil Sci., 3 (1): 20-27.
- Baloch, P.A.; M. Moizuddin; M. Imam; B.A. Abro; J.A. Lund and A.H. (Solangi (2004). Effect of NPK fertilizers and farmyard manure on nut production of Coconut (*Cocos Nucifera* L.). Asian J. of Plant Sci., 3 (1): 91-93.
- Belay, A.A., S. Classens; F.C. Whner and J.M. De Beer (2001). Influence of residual manure on selected nutrient elements and microbial composition of soil under long term crop rotation. South African Journal of Plant and soil 18, 1-6.
- Black, C.A. (1982). Methods of Soil Analysis. Part 2. Chemical and microbiological properties. Second Edition. Amer. Soc. of Agron. Madison, Wisconsin, U.S. A.
- Doorenbos, J. and A. H. Kassam (1986). Yield response to water. Irrigation and Drainage Paper No. 33, FAO, Rome, Italy.

- El-Hendawy, S. E. and U. Schmidhalter (2010). Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil. Agricultural Water Management 97:439–448.
- El-Hendawy, S.E.; E.A. Abd El-Lattief; M.S. Ahmed and U. Schmidhalter (2008a). Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn. Agricultural Water Management 95:836–844.
- EI-Hendawy. S. E., E. M. Hokam and U. Schmidhalter (2008b). Drip Irrigation Frequency: The Effects and Their Interaction with Nitrogen Fertilization on Sandy Soil Water Distribution, Maize Yield and Water Use Efficiency under Egyptian Conditions. J. Agronomy and Crop Science, 194(3):180–192.
- El-Tantawy, M.M.; S.A. Ouda, and F.A.F.Khalil (2007). Irrigation scheduling for maize grown under Middle Egypt conditions. Research Journal of Agriculture and Biological Sciences, 3(5):456-462.
- Farre. I and J.M. Faci (2009). Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agricultural Water Management, Volume 96, Issue 3: 383–394.
- Howell, T.A.; A. Yazar; A.D. Schneider; D.A. Dusek, and K.S. Copeland (1995). Yield and water use efficiency of maize in response to LEPA irrigation. Trans. ASAE 38:1737–1747.
- Ibrahim, S.A. and Hala, Kandil (2007). Growth yield and chemical constituents of corn (*zea maize* L.) as affected by nitrogen and phosphors fertilization under different irrigation intervals. J. Applied Sci. Res., 3(10): 1112-1120.
- Israelsen, O.W. and V.E. Hansen (1962). Irrigation Principles and Practices 3rd Ed., John Willy and Son Inc., New York, U.S.A.
- Jensen, M.E. (1983). Design and operation of farm irrigation systems, American Society Agric, Engin., St, Joseph, Michigan, USA.
- Masood, S. d, Tayyaba Naz, M. T. Javed, I. Ahmed, H. Ullah and M. Iqbal (2014). Effect of short-term supply of farmyard manure on maize growth and soil parameters in pot culture. Archives of Agronomy and Soil Science, Volume 60 (3): 337-347.
- Mbau, S. K., Nancy Karanja and F. Ayuke (2015). Short-term influence of compost application on maize yield, soil macrofauna diversity and abundance in nutrient deficient soils of Kakamega County, Kenya. Plant and Soil, Volume 387 (1):379-394.
- Mohsin, A.U.; J. Ahmad; A.U. H. Ahmad; R. M. Ikram and K. Mubeen (2012). Effect of nitrogen application through different combinations of urea and farmyard manure on the performance of spring maize (Zea mays L.). J. of Animal and Plant Sci. 22(1): 195-198.
- Moran, R. (1982). Formula for determination chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol., 69(6): 1376– 1381.

- Negassa, W; T. Abera; D.K. Friesen; A. Deressa and B. Dinsa (2001). Evaluation of compost for maize production under farmers' conditions. Seventh Eastern and Southern Africa Regional Maize Conference.382-386.
- NeSmith, D.S. and J.T. Ritchie (199. Short- and long-term responses of maize to a pre anthesis soil water deficit. Agron. J. 84: 107–113.
- Parkinson, J.A. and S.E. Allen (1975). A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Communications in Soil Science and Plant Analysis, Volume 6 (1):1- 11.
- Payero, J.O., D.D. Tarkalson, S. Irmak, D. Davison and J.L. Petersen (2009). Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass. Agricultural Water Management. Volume 96, Issue 10 :1387–1397.
- Rajput, M.I.; Z.A. Soomro and S.A. Siddiqui (2004). Evaluation of bread wheat on different fertilizer level. Asian J. of Plant Sci., 3 (1): 143-144.
- Ryan, J.; S. Garabet; K. Harmsen, and A. Rashid (1996). A soil and plant Analysis Manual Adapted for the west Asia and North Africa Region. ICARDA, Aleppo, Syria. 140 pp.
- Sharaan, A. N.; K.M.R Yousef; Abd F.S. EI-Samei and H.M. Ibrahim (2002). Maize yield and water relations under combinations of tillage systems and irrigation intervals. Proc. The 2nd Conf. of Sustainable Agric. Dev., Fayoum Fac. of Agric. Egypt: 31-42.
- Sial, R.A.; E.H. Chuadhary; S. Hussain and M. Naveed (2007). Effect of organic manures and chemical fertilizers on grain yield of maize in rainfed area. Soil Environ., 26: 130-133.
- Smith, N. (1991). "CROPWAT" model for ETo calculation using Penman Monteith Method. FAO, Rome, Italy.
- Snedecor, G.W. and W.G. Cochran (1980). One way classification-Analysis of Variance – The random effect model- Two way Classification (Eds) In Statistical Methods. The Iowa State Univ. Press, Amer. Iowa, USA, 215-273 pp.
- Soleimanifard, A.; R. Naseri; T. Emami; A. Mirzaei; H. Khoshkhabar and R. Soleimani (2011). The Effects of Irrigation Regimes and the Planting Patterns on Yield and Yields Components of Maize (SC 704). American-Eurasian J. Agric. & Environ. Sci., 10 (2): 278-282.
- Waller, R.A. and C.B. Duncan (1969). Abays rule for symmetric multiple comparison problem Amer. State Assoc. Jour., December: 1485-1503.
- Zhang, Z.H.; H.X. Song,; Q. Liu; X.M. Rong; J.W. Peng; G.X. Xie and Y.P. Zhang (2009). Study on differences of nitrogen efficiency and nitrogen response in different Oilseed Rape (*Brassica napus* L.) varieties. Asia Journal of Crop Science, 1 (2): 105-112.

انتاجية الذرة وبعض العلاقات المائية المتأثرة بكميات الرى ومعدلات الكمبوست خطاب عبد الباقي خطاب ،خالد محمود عبداللطيف، عصام الدين عبدالعزيز محمدعثمان و سامح محمود محمد عبده

معهد بحوث الاراضى والمياه والبيئة – مركز البحوث الزراعية - مصر

أقيمت تجربتان حقليتان خلال الموسم الصيفي ٢٠١٤ و ٢٠١٥ فى محطة البحوث الزراعية – العريش – شمال سيناء لدراسة تأثير مستويات مياه الرى هى ٢٠١٠، ٢١٠٠، ٢٤٠٠ م^{لف (} بالاضافة الى ثلاث معدلات من الكمبوست هى صفر (بدون إضافه) و ٢ و ٤ طن فدان⁻⁽ على النمو والمحصول ومكوناته وكذلك بعض المكونات الكيميائيه والعلاقات المائية فى الذرة الشامية استخدم تصميم القطع المنشقه مرة واحده فى اربعة مكررات واختبرت مستويات الري فى القطع الرئيسية وتمثلت معدلات الكمبوست فى القطع المنشقة وفيما يلي ملخص لأهم النتائج المتحصل عليها:

١-تـأثرت معظم قياسـات النمـو والمحصـول ومكوناتـه وكـذلك المكونـات الكيميائيـه معنويـا بمستويات الـري ومعدلات إضافة الكمبوست تحت الدراسة في كلا الموسمين.

- ٣- اضافة الكمبوست بمعدل ٤ طن فدان ً أعطي القبم الأعلي لكل الصفات السابقة الذكر أعلاه وذلك في كلاً الموسمين مقارنة بعدم الاضافة ومعدل ٢ طن فدان ً .
- ٤-تفاعل مستوي الري ٢٤٠٠ م ف أ ومعدل ٤ طن فدان من الكمبوست أظهر القيم الأعلي من الصفات سابقة الذكر ، و كانت قيم معامل المحصول هي ٢٤٠٠ ، ٩٥, ٠ ، ٢٨, ، ١٥, لشهور يونيو يوليو أخسطس سبتمبر علي الترتيب (متوسط للموسمين لهذا التقاعل). و علية ينصح بتطبيق هذا التقاعل (تحت ظروف المنطقة التي اقيم بها البحث) للحصول على قيم عالية من المحصول النهائي للاذرة الشامية وكذلك الاستخدام الأمثل لمياه الري.